ParkinsoNET: Estimation of UPDRS Score Using Hubness-Aware Feedforward Neural Networks

Autor: Krisztian Buza, Noémi Ágnes Varga
Rok vydání: 2016
Předmět:
Zdroj: Applied Artificial Intelligence. 30:541-555
ISSN: 1087-6545
0883-9514
DOI: 10.1080/08839514.2016.1193716
Popis: Parkinson’s disease is a worldwide, frequent, neurodegenerative disorder with increasing incidence. Speech disturbance appears during the progression of the disease. The Unified Parkinson’s Disease Rating Scale UPDRS is a gold-standard tool for diagnosis and follow-up of the disease. We aim at estimating the UPDRS score based on biomedical voice recordings. In this article, we study the hubness phenomenon in context of the UPDRS score estimation and propose hubness-aware error correction for feedforward neural networks to increase the accuracy of estimation. We perform experiments on publicly available datasets derived from real-voice data and show that the proposed technique systematically increases the accuracy of various feedforward neural networks.
Databáze: OpenAIRE
Nepřihlášeným uživatelům se plný text nezobrazuje