Some mean value results related to Hardy’s function
Autor: | Wenguang Zhai, Xiaodong Cao, Yoshio Tanigawa |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | Research in Number Theory. 7 |
ISSN: | 2363-9555 2522-0160 |
DOI: | 10.1007/s40993-021-00255-z |
Popis: | Let $$\zeta (s)$$ and Z(t) be the Riemann zeta function and Hardy’s function respectively. We show asymptotic formulas for $$\int _0^T Z(t)\zeta (1/2+it)dt$$ and $$\int _0^T Z^2(t) \zeta (1/2+it)dt$$ . Furthermore we derive an upper bound for $$\int _0^T Z^3(t) \chi ^{\alpha }(1/2+it)dt$$ for $$-1/2 |
Databáze: | OpenAIRE |
Externí odkaz: |