Stochastic quantization and mean field approximation
Autor: | R. Jengo, Néstor Parga |
---|---|
Rok vydání: | 1984 |
Předmět: |
Physics
Nuclear and High Energy Physics Mean field theory Differential equation Applied mathematics Condensed Matter::Strongly Correlated Electrons Context (language use) Fokker–Planck equation Statistical mechanics Statistical physics Limit (mathematics) Stochastic quantization Universal differential equation |
Zdroj: | Physics Letters B. 134:221-224 |
ISSN: | 0370-2693 |
DOI: | 10.1016/0370-2693(84)90675-0 |
Popis: | In the context of the stochastic quantization we propose factorized approximate solutions for the Fokker-Planck equation for the XY and ZN spin systems in D dimensions. The resulting differential equation for a factor can be solved and it is found to give in the limit of t→∞ the mean field or, in the more general case, the Bethe-Peierls approximation. |
Databáze: | OpenAIRE |
Externí odkaz: |