General Purpose Data-Driven System Monitoring for Space Operations

Autor: Ryan Mackey, J. Patrick Castle, Will Taylor, Rodney Martin, Mark Schwabacher, Liljana Spirkovska, David L. Iverson
Rok vydání: 2009
Předmět:
Zdroj: AIAA Infotech@Aerospace Conference.
DOI: 10.2514/6.2009-1909
Popis: Modern space propulsion and exploration system designs are becoming increasingly sophisticated and complex. Determining the health state of these systems using traditional methods is becoming more difficult as the number of sensors and component interactions grows. Data-driven monitoring techniques have been developed to address these issues by analyzing system operations data to automatically characterize normal system behavior. The Inductive Monitoring System (IMS) is a data-driven system health monitoring software tool that has been successfully applied to several aerospace applications. IMS uses a data mining technique called clustering to analyze archived system data and characterize normal interactions between parameters. This characterization, or model, of nominal operation is stored in a knowledge base that can be used for real-time system monitoring or for analysis of archived events. Ongoing and developing IMS space operations applications include International Space Station flight control, satellite vehicle system health management, launch vehicle ground operations, and fleet supportability. As a common thread of discussion this paper will employ the evolution of the IMS data-driven technique as related to several Integrated Systems Health Management (ISHM) elements. Thematically, the projects listed will be used as case studies. The maturation of IMS via projects where it has been deployed, or is currently being integrated to aid in fault detection will be described. The paper will also explain how IMS can be used to complement a suite of other ISHM tools, providing initial fault detection support for diagnosis and recovery.
Databáze: OpenAIRE