The Ethical and Responsible Development and Application of Advanced Brain Machine Interfaces (Preprint)

Autor: Andrew David Maynard, Marissa Scragg
Rok vydání: 2019
DOI: 10.2196/preprints.16321
Popis: UNSTRUCTURED Advanced brain machine interfaces provide potentially transformative approaches to treating neurological conditions and enhancing the performance of users. Yet, as technological capabilities continue to progress in leaps and bounds, there is a possibility that these capabilities outstrip our collective understanding of how to ensure brain machine interfaces are developed and used ethically and responsibly. In this case, there is an overt danger of rapid technological developments leading to unanticipated harm through a lack of foresight including threats to privacy, autonomy, self-identity, and other areas of personal and social value which, while hard to quantify, represent substantial risks. There is also a very real likelihood of such risks undermining value creation around the technologies and the associated enterprises, as key stakeholders push back against perceived and actual threats to what they, in turn, hold to be of value. In order to successfully traverse the resulting risk landscape, researchers and developers will need to become increasingly adept at integrating a sophisticated understanding of ethical and socially responsible innovation into their enterprises. Here, we illustrate how a “risk innovation” approach may provide novel insights into mapping out this landscape and revealing potentially blindsiding risks. We show how this approach can be used to illuminate challenges and opportunities to the successful, ethical, and responsible development of advanced brain machine interfaces. In addition, we emphasize how success will ultimately depend on the willingness of innovators and others to take ethical and responsible innovation seriously and to draw on the interdisciplinary and transdisciplinary expertise that is necessary to translate good intentions into positive outcomes.
Databáze: OpenAIRE