Asymptotics of Solutions of a Semilinear Elliptic Equation Satisfying Neumann Conditions on a Side Surface of a Cylindrical Domain
Autor: | T. S. Khachlaev |
---|---|
Rok vydání: | 2005 |
Předmět: | |
Zdroj: | Journal of Mathematical Sciences. 127:2315-2327 |
ISSN: | 1573-8795 1072-3374 |
DOI: | 10.1007/s10958-005-0180-5 |
Popis: | A semilinear elliptic equation is considered in a cylindrical domain. The asymptotic behavior of its solutions is studied in the case of zero Neumann conditions on the lateral surface. Asymptotic expansions are constructed for fixed-sign solutions. It is shown that variable-sign solutions have exponential decay. |
Databáze: | OpenAIRE |
Externí odkaz: |