Asymptotics of Solutions of a Semilinear Elliptic Equation Satisfying Neumann Conditions on a Side Surface of a Cylindrical Domain

Autor: T. S. Khachlaev
Rok vydání: 2005
Předmět:
Zdroj: Journal of Mathematical Sciences. 127:2315-2327
ISSN: 1573-8795
1072-3374
DOI: 10.1007/s10958-005-0180-5
Popis: A semilinear elliptic equation is considered in a cylindrical domain. The asymptotic behavior of its solutions is studied in the case of zero Neumann conditions on the lateral surface. Asymptotic expansions are constructed for fixed-sign solutions. It is shown that variable-sign solutions have exponential decay.
Databáze: OpenAIRE