Volume inequalities of convex bodies from cosine transforms on Grassmann manifolds
Autor: | Gaoyong Zhang, Dongmeng Xi, Ai-Jun Li |
---|---|
Rok vydání: | 2017 |
Předmět: |
0209 industrial biotechnology
Pure mathematics General Mathematics 010102 general mathematics Mathematical analysis Regular polygon 02 engineering and technology Type (model theory) 01 natural sciences 020901 industrial engineering & automation Grassmannian Discrete cosine transform Trigonometric functions Mathematics::Differential Geometry 0101 mathematics Isoperimetric inequality Unit (ring theory) Volume (compression) Mathematics |
Zdroj: | Advances in Mathematics. 304:494-538 |
ISSN: | 0001-8708 |
DOI: | 10.1016/j.aim.2016.09.007 |
Popis: | The L p cosine transform on Grassmann manifolds naturally induces finite dimensional Banach norms whose unit balls are origin-symmetric convex bodies in R n . Reverse isoperimetric type volume inequalities for these bodies are established, which extend results from the sphere to Grassmann manifolds. |
Databáze: | OpenAIRE |
Externí odkaz: |