Assimilation of streamflow and in situ soil moisture data into operational distributed hydrologic models: Effects of uncertainties in the data and initial model soil moisture states

Autor: Victor Koren, Hak Su Lee, Dong Jun Seo
Rok vydání: 2011
Předmět:
Zdroj: Advances in Water Resources. 34:1597-1615
ISSN: 0309-1708
Popis: We assess the potential of updating soil moisture states of a distributed hydrologic model by assimilating streamflow and in situ soil moisture data for high-resolution analysis and prediction of streamflow and soil moisture. The model used is the gridded Sacramento (SAC) and kinematic-wave routing models of the National Weather Service (NWS) Hydrology Laboratory’s Research Distributed Hydrologic Model (HL-RDHM) operating at an hourly time step. The data assimilation (DA) technique used is variational assimilation (VAR). Assimilating streamflow and soil moisture data into distributed hydrologic models is new and particularly challenging due to the large degrees of freedom associated with the inverse problem. This paper reports findings from the first phase of the research in which we assume, among others, perfectly known hydrometeorological forcing. The motivation for the simplification is to reduce the complexity of the problem in favour of improved understanding and easier interpretation even if it may compromise the goodness of the results. To assess the potential, two types of experiments, synthetic and real-world, were carried out for Eldon (ELDO2), a 795-km2 headwater catchment located near the Oklahoma (OK) and Arkansas (AR) border in the U.S. The synthetic experiment assesses the upper bound of the performance of the assimilation procedure under the idealized conditions of no structural or parametric errors in the models, a full dynamic range and no microscale variability in the in situ observations of soil moisture, and perfectly known univariate statistics of the observational errors. The results show that assimilating in situ soil moisture data in addition to streamflow data significantly improves analysis and prediction of soil moisture and streamflow, and that assimilating streamflow observations at interior locations in addition to those at the outlet improves analysis and prediction of soil moisture within the drainage areas of the interior stream gauges and of streamflow at downstream cells along the channel network. To assess performance under more realistic conditions, but still under the assumption of perfectly known hydrometeorological forcing to allow comparisons with the synthetic experiment, an exploratory real-world experiment was carried out in which all other assumptions were lifted. The results show that, expectedly, assimilating interior flows in addition to outlet flow improves analysis as well as prediction of streamflow at stream gauge locations, but that assimilating in situ soil moisture data in addition to streamflow data provides little improvement in streamflow analysis and prediction though it reduces systematic biases in soil moisture simulation.
Databáze: OpenAIRE