Intermediate links of plane curves

Autor: Arnaud Bodin, Maciej Borodzik
Rok vydání: 2018
Předmět:
Zdroj: Israel Journal of Mathematics. 227:63-111
ISSN: 1565-8511
0021-2172
DOI: 10.1007/s11856-018-1716-y
Popis: For a smooth complex curve C ⊂ ℂ2 we consider the link Lr = C ∩ ∂Br, where Br denotes an Euclidean ball of radius r > 0. We prove that the diagram Dr obtained from Lr by a complex stereographic projection satisfies χ(C ∩Br) = rot(Dr)−wr(Dr). As a consequence we show that if Dr has no negative Seifert circles and Lr is strongly quasipositive and fibered, then the Yamada–Vogel algorithm applied to Dr yields a quasipositive braid.
Databáze: OpenAIRE