Intermediate links of plane curves
Autor: | Arnaud Bodin, Maciej Borodzik |
---|---|
Rok vydání: | 2018 |
Předmět: | |
Zdroj: | Israel Journal of Mathematics. 227:63-111 |
ISSN: | 1565-8511 0021-2172 |
DOI: | 10.1007/s11856-018-1716-y |
Popis: | For a smooth complex curve C ⊂ ℂ2 we consider the link Lr = C ∩ ∂Br, where Br denotes an Euclidean ball of radius r > 0. We prove that the diagram Dr obtained from Lr by a complex stereographic projection satisfies χ(C ∩Br) = rot(Dr)−wr(Dr). As a consequence we show that if Dr has no negative Seifert circles and Lr is strongly quasipositive and fibered, then the Yamada–Vogel algorithm applied to Dr yields a quasipositive braid. |
Databáze: | OpenAIRE |
Externí odkaz: |