On the rate of convergence to zero of the measure of extremal sets in metric theory of transcendental numbers
Autor: | Natalia Budarina |
---|---|
Rok vydání: | 2018 |
Předmět: |
Discrete mathematics
Degree (graph theory) General Mathematics 010102 general mathematics Zero (complex analysis) 01 natural sciences Measure (mathematics) Rate of convergence Bounded function 0103 physical sciences Metric (mathematics) 010307 mathematical physics Transcendental number 0101 mathematics Mathematics |
Zdroj: | Mathematische Zeitschrift. 293:809-824 |
ISSN: | 1432-1823 0025-5874 |
Popis: | We investigate the question on the rate of convergence to zero of the measure of the set $$x\in \mathbb {R}$$ for which the inequality $$|P(x)|n$$ has a solution in integral polynomials of degree n and height bounded by $$Q\in \mathbb {N}$$ . In this paper, for the first time, we obtain an effective estimate for this rate of convergence to zero. |
Databáze: | OpenAIRE |
Externí odkaz: |