3GPP V2X on Unlicensed Spectrum: Performance Analysis and Optimum Channel Access Strategies
Autor: | Hua-Lung Tsai, Shao-Yu Lien |
---|---|
Rok vydání: | 2021 |
Předmět: |
Computer Networks and Communications
Computer science business.industry Transmitter Bandwidth (signal processing) Aerospace Engineering Throughput Spectrum management Interference (communication) Automotive Engineering Performance measurement Electrical and Electronic Engineering business Intelligent transportation system Computer network Communication channel |
Zdroj: | IEEE Transactions on Vehicular Technology. 70:9230-9243 |
ISSN: | 1939-9359 0018-9545 |
DOI: | 10.1109/tvt.2021.3102276 |
Popis: | Featuring unprecedentedly high data rates and high connection densities, 3GPP New Radio (NR) vehicle-to-everything (V2X) communications have been regarded as the most promising remedy to support the next generation driving use cases. For this purpose, although dedicated bands on 5.9 GHz spectrum have been allocated for Intelligent Transportation Systems (ITS), the limited bandwidth may not afford the desired service requirements. This engineering concern thus drives the utilization of unlicensed bands on 5 GHz spectrum adjacent to the ITS bands. However, subject to the fairness constraint in sharing unlicensed spectrum, various communication regulations have been imposed, and four different types of multi-band channel access procedures are consequently developed both in 3GPP LTE-A Licensed-Assisted Access (LAA) and NR on unlicensed spectrum (NR-U), to lead to a phenomenon that occupying more unlicensed bands may not suggest a proportional growth in the throughput. To empower high-throughout and high-density V2X communications, in this paper, we consequently propose the optimum channel access strategies for each V2X transmitter to decide the optimum number of unlicensed bands to access. To this end, analytic models for four types of multi-band channel access procedures in 3GPP NR-U are provided, which capture both inter-system and intra-system interference from coexisting WiFi transmitters and V2X transmitters. Subsequently, game-theoretically optimum strategies for each type of multi-band channel access procedures are derived. Performance evaluation results fully demonstrate the optimality of the proposed strategies, to serve the urgent demands in supporting the next generation driving use cases on unlicensed spectrum. |
Databáze: | OpenAIRE |
Externí odkaz: |