An integrable generalization of the super AKNS hierarchy and its bi-Hamiltonian formulation
Autor: | Shou-Ting Chen, Jing Yu, Wen-Xiu Ma, Jingwei Han |
---|---|
Rok vydání: | 2017 |
Předmět: |
Numerical Analysis
Pure mathematics Integrable system Applied Mathematics 01 natural sciences 010305 fluids & plasmas Algebra symbols.namesake Nonlinear Sciences::Exactly Solvable and Integrable Systems Modeling and Simulation 0103 physical sciences symbols 010306 general physics Hamiltonian (quantum mechanics) Mathematics |
Zdroj: | Communications in Nonlinear Science and Numerical Simulation. 43:151-157 |
ISSN: | 1007-5704 |
DOI: | 10.1016/j.cnsns.2016.06.033 |
Popis: | Based on a Lie super-algebra B(0, 1), an integrable generalization of the super AKNS iso-spectral problem is introduced and its corresponding generalized super AKNS hierarchy is generated. By making use of the super-trace identity (or the super variational identity), the resulting super soliton hierarchy can be put into a super bi-Hamiltonian form. A generalized super AKNS soliton hierarchy with self-consistent sources is also presented. |
Databáze: | OpenAIRE |
Externí odkaz: |