The Gross–Zagier–Zhang formula over function fields
Autor: | Congling Qiu |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | Mathematische Annalen. 384:625-731 |
ISSN: | 1432-1807 0025-5831 |
DOI: | 10.1007/s00208-021-02289-1 |
Popis: | We prove the Gross–Zagier–Zhang formula over global function fields of arbitrary characteristics. It is an explicit formula which relates the Neron-Tate heights of CM points on abelian varieties and central derivatives of associated quadratic base change L-functions. Our proof is based on an arithmetic variant of a relative trace identity of Jacquet. This approach is proposed by Zhang. We apply our results to the Birch and Swinnerton–Dyer conjecture for abelian varieties of $${\mathrm {GL}}_2$$ -type. In particular, we prove the conjecture for elliptic curves of analytic rank 1. |
Databáze: | OpenAIRE |
Externí odkaz: |