Determination of fracture energy (mode I) in the inverse fiber metal laminates using experimental–numerical approach

Autor: Grzegorz Lesiuk, Sz. Duda, Michał Smolnicki, T. Osiecki
Rok vydání: 2021
Předmět:
Zdroj: International Journal of Fracture. 234:213-222
ISSN: 1573-2673
0376-9429
DOI: 10.1007/s10704-021-00566-3
Popis: Fiber metal laminates (FML) are hybrid materials consisting of metal and composite layers. They have great mechanical and fatigue properties. However, interface between metal and composite layers can be critical for their final properties. In this paper, process of determination of some fracture parameters of this interface in unusual FML material is described. Experimental tests following ASTM norm were conducted using Double Cantilever Beam (DCB). However, due to asymmetry, fracture energy cannot be obtained directly from the force–displacement curve. Finite element method simulations were carried out using cohesive elements and cohesive surfaces approach. The cohesive behavior of interface layers were modelled using traction separation law. Key properties of this law were obtained—maximal traction and fracture energy. In this particular case cohesive approach was better in reflecting experimental results. Determined values can be used in later research tasks (like modelling big structures containing this material) as material properties. The presented approach can be used successfully to obtain fracture energy in cases of materials for which standard approach is insufficient.
Databáze: OpenAIRE