Removal of nitric oxide and sulfur dioxide from flue gases using a FeII-ethylenediamineteraacetate solution
Autor: | Yu Chen, Wei-Kang Yuan, Yan-peng Mao, Xiang-li Long, Hai-song Zhu |
---|---|
Rok vydání: | 2013 |
Předmět: | |
Zdroj: | Korean Journal of Chemical Engineering. 30:1241-1247 |
ISSN: | 1975-7220 0256-1115 |
DOI: | 10.1007/s11814-013-0053-4 |
Popis: | The combined absorption of NO and SO2 into the Fe(II)-ethylenediamineteraacetate(EDTA) solution has been realized. Activated carbon is used to catalyze the reduction of FeIII-EDTA to FeII-EDTA to maintain the ability to remove NO with the Fe-EDTA solution. The reductant is the sulfite/bisulfite ions produced by SO2 dissolved into the aqueous solution. Experiments have been performed to determine the effects of activated carbon of coconut shell, pH value, temperature of absorption and regeneration, O2 partial pressure, sulfite/bisulfite and chloride concentration on the combined elimination of NO and SO2 with FeII-EDTA solution coupled with the FeII-EDTA regeneration catalyzed by activated carbon. The experimental results indicate that NO removal efficiency increases with activated carbon mass. There is an optimum pH of 7.5 for this process. The NO removal efficiency increases with the liquid flow rate but it is not necessary to increase the liquid flow rate beyond 25 ml min−1. The NO removal efficiency decreases with the absorption temperature as the temperature is over 35 °C. The Fe2+ regeneration rate may be speeded up with temperature. The NO removal efficiency decreases with O2 partial pressure in the gas streams. The NO removal efficiency is enhanced with the sulfite/bisulfite concentration. Chloride does not affect the NO removal. Ca(OH)2 and MgO slurries have little influence on NO removal. High NO and SO2 removal efficiencies can be maintained at a high level for a long period of time with this heterogeneous catalytic process. |
Databáze: | OpenAIRE |
Externí odkaz: |