Extensions of the John–Nirenberg theorem and applications

Autor: Carlos Pérez, Javier Canto
Rok vydání: 2021
Předmět:
Zdroj: Proceedings of the American Mathematical Society. 149:1507-1525
ISSN: 1088-6826
0002-9939
DOI: 10.1090/proc/15302
Popis: The John–Nirenberg theorem states that functions of bounded mean oscillation are exponentially integrable. In this article we give two extensions of this theorem. The first one relates the dyadic maximal function to the sharp maximal function of Fefferman–Stein, while the second one concerns local weighted mean oscillations, generalizing a result of Muckenhoupt and Wheeden. Applications to the context of generalized Poincaré type inequalities and to the context of the C p C_p class of weights are given. Extensions to the case of polynomial BMO \operatorname {BMO} type spaces are also given.
Databáze: OpenAIRE