Solvability of a Boundary Value Problem for Elliptic Differential-Operator Equations of the Second Order with a Quadratic Complex Parameter
Autor: | Ya. Yakubov, B. A. Aliev, V. Z. Kerimov |
---|---|
Rok vydání: | 2020 |
Předmět: |
0209 industrial biotechnology
Function space General Mathematics Operator (physics) 010102 general mathematics Order (ring theory) 02 engineering and technology 01 natural sciences Upper and lower bounds Prime (order theory) Bounded operator Combinatorics 020901 industrial engineering & automation Ordinary differential equation Boundary value problem 0101 mathematics Analysis Mathematics |
Zdroj: | Differential Equations. 56:1306-1317 |
ISSN: | 1608-3083 0012-2661 |
DOI: | 10.1134/s00122661200100079 |
Popis: | We study the solvability of the problem for the elliptic second-order differential-operator equation $$\lambda ^2 u(x)-u^{\prime {}\prime }(x)+Au(x)=f(x) $$ , $$x\in (0,1)$$ , in a separable Hilbert space $$H$$ with the boundary conditions $$ u^{\prime }(1)+\lambda Bu(0)=f_1$$ and $$u^{\prime }(0)=f_2$$ , where $$\lambda $$ is a complex parameter, $$A$$ and $$B$$ are given linear operators in $$H$$ , the operator $$A$$ is $$\varphi $$ -positive, and $$f $$ , $$f_1$$ , and $$ f_2$$ are known functions. Sufficient conditions for the unique solvability of this problem in an appropriate function space are obtained, and an upper bound (coercive if $$ B$$ is a bounded operator and noncoercive if the operator $$ B$$ is unbounded) is established for the solution. An application of these abstract results to elliptic boundary value problems is given. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |