Symmetries of modules of differential operators on the supercircle $$S^{1|n} $$
Autor: | I. Safi, J. Boujelben, K. Tounsi, Z. Saoudi |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | Indian Journal of Pure and Applied Mathematics. 53:701-719 |
ISSN: | 0975-7465 0019-5588 |
DOI: | 10.1007/s13226-021-00164-y |
Popis: | Let $$\mathfrak {F}_{\lambda }^n$$ be the space of tensor densities of degree $$\lambda \in \mathbb {C}$$ on the supercircle $$S^{1|n}$$ . We consider the space $$\mathfrak {D}_{\lambda ,\mu }^{n,k}$$ of k-th order linear differential operators from $$\mathfrak {F}_{\lambda }^n$$ to $$\mathfrak {F}_{\mu }^n$$ as a module over the superalgebra $$\mathcal {K}(n)$$ of contact vector fields on $$S^{1|n}$$ and we compute the superalgebra of endomrphisms on $$\mathfrak {D}_{\lambda ,\mu }^{n,k}$$ commuting with the $$\mathfrak {aff}(n|1)$$ -action where $$\mathfrak {aff}(n|1)$$ is the affine subalgebra of $$\mathcal {K}(n)$$ . This result allows us to determine the superalgebra of endomrphisms on $$\mathfrak {D}_{\lambda ,\mu }^{n,k}$$ commuting with the $$\mathfrak {osp}(n|2)$$ -action for $$n\in \{1,2,3\}$$ where $$\mathfrak {osp}(n|2)$$ is the orthosymlectic superalgebras of $$S^{1|n}$$ . |
Databáze: | OpenAIRE |
Externí odkaz: |