Leveraging a predictive model of the workload for intelligent slot allocation schemes in energy-efficient HPC clusters

Autor: Luciano Sánchez, José Ranilla, Alberto Cocaña-Fernández
Rok vydání: 2016
Předmět:
Zdroj: Engineering Applications of Artificial Intelligence. 48:95-105
ISSN: 0952-1976
DOI: 10.1016/j.engappai.2015.10.003
Popis: A proactive mechanism to learn an efficient strategy for adaptive resource clusters is proposed. In contrast to reactive techniques, that rescale the cluster to fit the past load, a predictive strategy is adopted. The cluster incoming workload is forecasted and an optimization problem is defined whose solution is the optimal action according to a utility function. Genetic-based machine learning techniques are used, including multi-objective evolutionary algorithms under the distal supervised learning setup. Experimental evaluations show that the proactive system presented in this work improves either the energetic efficiency or the number of reconfigurations of previous approaches without a loss in the quality of service. Depending on the predictability of the workload, in real world cluster scenarios additional energy savings of up to approximately 40% were measured over the best previous approach, with a 2× factor increment in the number of reconfigurations.
Databáze: OpenAIRE