Unbounded Capacity Associative Memory for Real-valued Pattern Storage and Recall
Autor: | Fathi M. Salem |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | MWSCAS |
DOI: | 10.1109/mwscas47672.2021.9531698 |
Popis: | We describe an unbounded capacity Associative Memory which effectively stores and retrieves unrestricted real-valued data/patterns with fidelity. This Associative Memory arises from a gradient system of a (differentiable scalar) energy function, and thus can directly be incorporated within existing layers of computational Deep Learning (DL) frameworks. The design effort also describes two options for key pattern retrieval. |
Databáze: | OpenAIRE |
Externí odkaz: |