On vectorial bent functions with Dillon-type exponents
Autor: | Lucien Lapierre, Petr Lisonek |
---|---|
Rok vydání: | 2016 |
Předmět: |
Discrete mathematics
Monomial Bent function Degree (graph theory) Bent molecular geometry 020206 networking & telecommunications 0102 computer and information sciences 02 engineering and technology Type (model theory) 01 natural sciences Finite field 010201 computation theory & mathematics Domain (ring theory) 0202 electrical engineering electronic engineering information engineering Physics::Accelerator Physics Algebraic number Mathematics |
Zdroj: | ISIT |
DOI: | 10.1109/isit.2016.7541347 |
Popis: | We study vectorial bent functions with Dillon-type exponents. These functions have attracted attention because they are hyperbent whenever they are bent, and they achieve the highest possible algebraic degree among all bent functions on the same domain. In low dimensions we determine the simplest possible forms of such functions when they map to GF(4). We prove non-existence results for certain monomial and multinomial bent functions mapping to large codomains. |
Databáze: | OpenAIRE |
Externí odkaz: |