MN-Core - A Highly Efficient and Scalable Approach to Deep Learning

Autor: Takuya Akiba, K. Takahashi, Junichiro Makino, T. Kato, A. Takahashi, Tanvir Ahmed, Kei Hiraki, S. Kitajo, G. Watanabe, Y. Doi, J. Ono, K. Mizumaru, Hiroto Imachi, T. Adachi, H. Kaneko, Y. Tomonaga, Johannes Maximilian Kühn, S. Kashihara, Ryosuke Okuta, Y. Takatsukasa, T. Yamauchi, Ken Namura, N. Tanaka, H. Miyashita, Brian Vogel, F. Osawa
Rok vydání: 2021
Předmět:
Zdroj: VLSI Circuits
DOI: 10.23919/vlsicircuits52068.2021.9492395
Popis: MN-Core is a highly efficient deep learning training accelerator reaching in excess of 1 TFLOPS/W (half-precision) at board level in real-world mixed-precision workloads. To reach and sustain this level of performance, the design is partitioned and packaged as four-die MCM package exceeding 3000mm2 of die area.
Databáze: OpenAIRE