Smallest graphs with given generalized quaternion automorphism group
Autor: | Christina Graves, Lindsey-Kay Lauderdale, Stephen J. Graves |
---|---|
Rok vydání: | 2017 |
Předmět: |
Symmetric graph
010102 general mathematics 0102 computer and information sciences 01 natural sciences Distance-regular graph Semi-symmetric graph Combinatorics Vertex-transitive graph Edge-transitive graph 010201 computation theory & mathematics Discrete Mathematics and Combinatorics Path graph Geometry and Topology 0101 mathematics Graph automorphism Complement graph Mathematics |
Zdroj: | Journal of Graph Theory. 87:430-442 |
ISSN: | 0364-9024 |
DOI: | 10.1002/jgt.22166 |
Popis: | For n≥3, a smallest graph whose automorphism group is isomorphic to the generalized quaternion group is constructed. If n≠3, then such a graph has 2n+1 vertices and 2n+2 edges. In the special case when n=3, a smallest graph has 16 vertices but 44 edges. |
Databáze: | OpenAIRE |
Externí odkaz: |