The Löwner Function of a Log-Concave Function

Autor: Ben Li, Carsten Schuett, Elisabeth M. Werner
Rok vydání: 2019
Předmět:
Zdroj: The Journal of Geometric Analysis. 31:423-456
ISSN: 1559-002X
1050-6926
DOI: 10.1007/s12220-019-00270-8
Popis: We introduce the notion of Lowner (ellipsoid) function for a log-concave function and show that it is an extension of the Lowner ellipsoid for convex bodies. We investigate its duality relation to the recently defined John (ellipsoid) function (Alonso-Gutierrez et al. in J Geom Anal 28:1182–1201, 2018). For convex bodies, John and Lowner ellipsoids are dual to each other. Interestingly, this need not be the case for the John function and the Lowner function.
Databáze: OpenAIRE