Backward error analysis of an inexact Arnoldi method

Autor: Christian Schröder, Ute Kandler
Rok vydání: 2013
Předmět:
Zdroj: PAMM. 13:417-418
ISSN: 1617-7061
DOI: 10.1002/pamm.201310204
Popis: We investigate the behavior of Arnoldi's method for Hermitian matrices in the case of inexact vector operations. A special purpose variant of Gram Schmidt orthogonalization is introduced which computes a nearly orthogonal Krylov subspace basis and additionally implicitly provides an exactly orthogonal basis. In the second part we perform a backward error analysis and show that the exactly orthogonal basis satisfies a Krylov relation for a perturbed system matrix. The norm of the backward error is shown to be on the level of the accuracy of the vector operations. (© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)
Databáze: OpenAIRE