Autor: |
Pallikonda Rajasekaran. M, Aruna. R, Babiyola. D, Revathi. P |
Rok vydání: |
2012 |
Předmět: |
|
Zdroj: |
International Journal of Electronics Signals and Systems. :171-177 |
ISSN: |
2231-5969 |
DOI: |
10.47893/ijess.2012.1033 |
Popis: |
Process variables vary with time in certain applications. Monitoring systems let us avoid severe economic losses resulting from unexpected electric system failures by improving the system reliability and maintainability The installation and maintenance of such monitoring systems is easy when it is implemented using wireless techniques. ZigBee protocol, that is a wireless technology developed as open global standard to address the low-cost, low-power wireless sensor networks. The goal is to monitor the parameters and to classify the parameters in normal and abnormal conditions to detect fault in the process as early as possible by using artificial intelligent techniques. A key issue is to prevent local faults to be developed into system failures that may cause safety hazards, stop temporarily the production and possible detrimental environment impact. Several techniques are being investigated as an extension to the traditional fault detection and diagnosis. Computational intelligence techniques are being investigated as an extension to the traditional fault detection and diagnosis methods. This paper proposes ANFIS (Adaptive Neural Fuzzy Inference System) for fault detection and diagnosis. In ANFIS, the fuzzy logic will create the rules and membership functions whereas the neural network trains the membership function to get the best output. The output of ANFIS is compared with Back Propagation Algorithm (BPN) algorithm of neural network. The training and testing data required to develop the ANFIS model were generated at different operating conditions by running the process and by creating various faults in real time in a laboratory experimental model. |
Databáze: |
OpenAIRE |
Externí odkaz: |
|