Microstructure and mechanical properties of Ti-6Al-4V/Ti-22Al-25Nb joint formed by diffusion bonding
Autor: | Gang Liu, Xiao-Lei Cui, Wen-kai Zhao, Peng Lin, Xian-zheng Xi, Rui-hong Yang, Fei Lin |
---|---|
Rok vydání: | 2021 |
Předmět: |
010302 applied physics
Materials science Alloy Metals and Alloys 02 engineering and technology engineering.material 021001 nanoscience & nanotechnology Geotechnical Engineering and Engineering Geology Condensed Matter Physics Microstructure 01 natural sciences Diffusion layer Phase (matter) 0103 physical sciences Ultimate tensile strength Materials Chemistry Fracture (geology) engineering Composite material 0210 nano-technology Joint (geology) Diffusion bonding |
Zdroj: | Transactions of Nonferrous Metals Society of China. 31:1339-1349 |
ISSN: | 1003-6326 |
DOI: | 10.1016/s1003-6326(21)65581-4 |
Popis: | Ti-6Al-4V (wt.%) and Ti-22Al-25Nb (at.%) were joined by diffusion bonding at 950 °C and 15 MPa for 100 min, and the microstructure and mechanical properties of the resulting joints were investigated. The composition of the diffusion layer is B2/discontinuous α/α2 layer/necklace-shaped β+α′ layer, where the content of any element at a given point mainly depends on the distance of the point from the interface and the phase type at the point. The tensile strength of the joint is 894 MPa, which is almost the same as that of the Ti-22Al-25Nb base alloy. The fracture surfaces on both sides of the joint are composed of two main regions. One region displays a relatively flat surface and fractures along the bonding interface. The other is composed of a moderate number of irregularly-shaped cavities on the Ti-6Al-4V side and many irregularly-shaped bulges on the Ti-22Al-25Nb side. Both regions result from fracture along the boundaries between β+α′ layers and αp grains or from the transcrystalline fracture of αp grains. |
Databáze: | OpenAIRE |
Externí odkaz: |