Using GPUs to Speed up a Tomographic Reconstructor Based on Machine Learning
Autor: | Ramón Ángel Fernández Díaz, José Luis Calvo Rolle, Carlos González-Gutiérrez, Nieves Roqueñí Gutiérrez, Jesús Daniel Santos-Rodríguez, Francisco Javier de Cos Juez |
---|---|
Rok vydání: | 2016 |
Předmět: | |
Zdroj: | International Joint Conference SOCO’16-CISIS’16-ICEUTE’16 ISBN: 9783319473635 SOCO-CISIS-ICEUTE |
DOI: | 10.1007/978-3-319-47364-2_27 |
Popis: | The next generation of adaptive optics (AO) systems require tomographic techniques in order to correct for atmospheric turbulence along lines of sight separated from the guide stars. Multi-object adaptive optics (MOAO) is one such technique. Here we present an improved version of CARMEN, a tomographic reconstructor based on machine learning, using a dedicated neural network framework as Torch. We can observe a significant improvement on the training an execution times of the neural network, thanks to the use of the GPU. |
Databáze: | OpenAIRE |
Externí odkaz: |