Fluid inclusion modification by H2O and D2O diffusion: the influence of inclusion depth, size, and shape in re-equilibration experiments

Autor: Gerald Doppler, Miriam Baumgartner, Ronald J. Bakker
Rok vydání: 2013
Předmět:
Zdroj: Contributions to Mineralogy and Petrology. 165:1259-1274
ISSN: 1432-0967
0010-7999
DOI: 10.1007/s00410-013-0857-6
Popis: The mobility of H2O and D2O by diffusion through quartz is illustrated with H2O-rich fluid inclusions synthesized at 600 °C and 337 MPa, within the α-quartz stability field. Inclusions are re-equilibrated at the same experimental conditions within a pure D2O fluid environment. Consequently, a gradient in volatile fugacities is the only driving force for diffusion, in the absence of pressure gradients and deformation processes. Up to 100 individual inclusions are analyzed in each experiment before and after re-equilibration by microscopic investigation, microthermometry, and Raman spectroscopy. Changes in fluid inclusion composition are obtained from the ice-melting temperatures, and density changes are obtained from total homogenization temperatures. After 1-day re-equilibration, inclusions already contain up to 11 mol % D2O. A maximum concentration of 63 mol % D2O is obtained after 40-day re-equilibration. D2O concentration profiles in quartz are determined from the concentration in inclusions as a function of their distance to the quartz surface. These profiles illustrate that deep inclusions contain less D2O than shallow inclusions. At equal depths, a variety of D2O concentration is observed as a function of fluid inclusion size: Small inclusions are stronger effected compared with large inclusions. A series of 19-day re-equilibration experiments are performed at 300, 400, 500, and 600 °C (at 337 MPa), at the same conditions as the original synthesis. The threshold temperature of diffusion is estimated around 450 °C at 337 MPa, because D2O is not detected in inclusions from re-equilibration experiments at 300 and 400 °C, whereas maximally 26 mol % D2O is detected at 500 °C. Our study indicates that the isotopic composition of natural fluid inclusions may be easily modified by re-equilibration processes, according to the experimental conditions at 600 °C and 337 MPa.
Databáze: OpenAIRE