Combinatorial interpretations of a recent convolution for the number of divisors of a positive integer
Autor: | Mircea Merca |
---|---|
Rok vydání: | 2016 |
Předmět: |
Lambert series
Highly composite number Discrete mathematics Practical number Algebra and Number Theory 010102 general mathematics Divisor function 0102 computer and information sciences Table of divisors 01 natural sciences Semiperfect number Combinatorics 010201 computation theory & mathematics 0101 mathematics Refactorable number Perfect number Mathematics |
Zdroj: | Journal of Number Theory. 160:60-75 |
ISSN: | 0022-314X |
DOI: | 10.1016/j.jnt.2015.08.014 |
Popis: | In this paper, we give a refined form of a recent factorization of Lambert series. This result allows us to prove new connections between partitions and divisors of positive integers, such as a new formula for the number of divisors of a positive integer as a convolution. Three recurrence relations for computing the number of partitions of a positive integer into distinct parts are rediscovered in this context. |
Databáze: | OpenAIRE |
Externí odkaz: |