Locally convex hypersurfaces immersed in $$\mathbb {H}^n\times \mathbb {R}$$ H n × R

Autor: Inês S. de Oliveira Padilha, S. J. Paul A. Schweitzer
Rok vydání: 2016
Předmět:
Zdroj: Geometriae Dedicata. 188:17-32
ISSN: 1572-9168
0046-5755
DOI: 10.1007/s10711-016-0202-0
Popis: We prove a theorem of Hadamard–Stoker type: a connected locally convex complete hypersurface immersed in \(\mathbb {H}^n\times \mathbb {R}\) (\(n\ge 2\)), where \(\mathbb {H}^n\) is n-dimensional hyperbolic space, is embedded and homeomorphic either to the n-sphere or to \(\mathbb {R}^n\). In the latter case it is either a vertical graph over a convex domain in \(\mathbb {H}^n\) or has what we call a simple end.
Databáze: OpenAIRE