Target-site resistance to acetolactate synthase (ALS)-inhibiting herbicides inAmaranthus palmerifrom Argentina

Autor: Valeria E. Palmieri, Valeria Elisa Perotti, Daniel Tuesca, Alvaro Santiago Larran, Lucas Lieber, Hugo R. Permingeat
Rok vydání: 2017
Předmět:
Zdroj: Pest Management Science. 73:2578-2584
ISSN: 1526-498X
DOI: 10.1002/ps.4662
Popis: BACKGROUND Herbicide-resistant weeds are a serious problem worldwide. Recently, two populations of Amaranthus palmeri with suspected cross-resistance to acetolactate synthase (ALS)-inhibiting herbicides (R1 and R2) were found by farmers in two locations in Argentina (Vicuna Mackenna and Totoras, respectively). We conducted studies to confirm and elucidate the mechanism of resistance. RESULTS We performed in vivo dose–response assays, and confirmed that both populations had strong resistance to chlorimuron-ethyl, diclosulam and imazethapyr when compared with a susceptible population (S). In vitro ALS activity inhibition tests only indicated considerable resistance to imazethapyr and chlorimuron-ethyl, indicating that other non-target mechanisms could be involved in diclosulam resistance. Subsequently, molecular analysis of als nucleotide sequences revealed three single base-pair mutations producing substitutions in amino acids previously associated with resistance to ALS inhibitors, A122, W574, and S653. CONCLUSION This is the first report of als resistance alleles in A. palmeri in Argentina. The data support the involvement of a target-site mechanism of resistance to ALS-inhibiting herbicides. © 2017 Society of Chemical Industry
Databáze: OpenAIRE