Stability of Symmetric Hyperbolic Systems with Nonlinear Feedback
Autor: | Gideon Peyser |
---|---|
Rok vydání: | 1975 |
Předmět: | |
Zdroj: | SIAM Journal on Mathematical Analysis. 6:925-936 |
ISSN: | 1095-7154 0036-1410 |
DOI: | 10.1137/0506081 |
Popis: | This paper studies the stability of distributed parameter systems represented by the symmetric hyperbolic system $\Phi_i + \sum _{i = 1}^m A_i \Phi_{x_i} + B\Phi = \mathcal{F}\Phi $, with the nonlinear feedback operator $\mathcal{F}$. The trajectory solution is derived, with the system states as elements in the space of square integrable functions. Stability and instability criteria are obtained for the trajectory solutions. Also, global and local asymptotic and $L_2$-stability criteria, and analogues of Lyapunov’s first method are derived. |
Databáze: | OpenAIRE |
Externí odkaz: |