Stability of Symmetric Hyperbolic Systems with Nonlinear Feedback

Autor: Gideon Peyser
Rok vydání: 1975
Předmět:
Zdroj: SIAM Journal on Mathematical Analysis. 6:925-936
ISSN: 1095-7154
0036-1410
DOI: 10.1137/0506081
Popis: This paper studies the stability of distributed parameter systems represented by the symmetric hyperbolic system $\Phi_i + \sum _{i = 1}^m A_i \Phi_{x_i} + B\Phi = \mathcal{F}\Phi $, with the nonlinear feedback operator $\mathcal{F}$. The trajectory solution is derived, with the system states as elements in the space of square integrable functions. Stability and instability criteria are obtained for the trajectory solutions. Also, global and local asymptotic and $L_2$-stability criteria, and analogues of Lyapunov’s first method are derived.
Databáze: OpenAIRE