Effect of surface stretching on convective instabilities of Kármán flow of non-Newtonian Carreau fluid
Autor: | Bikash Sahoo, Dip Mukherjee |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 236:10792-10809 |
ISSN: | 2041-2983 0954-4062 |
DOI: | 10.1177/09544062221105756 |
Popis: | Linear convective instability analysis of non-Newtonian fluids has immense practical applications in the field of aerodynamics and engineering mechanics. The paper deals with linear convective instability analysis of laminar Kármán swirling flow of a non-Newtonian Carreau fluid over a radially stretchable rotating disk of infinite radius when the Coriolis force is significant in the boundary layer. In this paper, the velocity profiles for both shear-thinning and shear-thickening fluids the above-mentioned flow of Carreau model have been determined under stretch boundary condition. By using the Chebyshev collocation method, a study of convective instability has been carried out in order to perform a stability analysis of the flow and determine the neutral stability curves. The stability curves reveal that the bottom disk’s surface stretching has a globally stabilizing effect on the fluid exhibiting shear-thinning flow behaviour and a globally destabilizing effect on shear-thickening flow behaviour. To verify the above physical facts, the flow has been subjected to an energy analysis at the same time. |
Databáze: | OpenAIRE |
Externí odkaz: |