Organ microcirculatory disturbances in experimental acute pancreatitis: a role of nitric oxide

Autor: M Dobosz, S Hac, L Mionskowska, D Dymecki, S Dobrowolski, Z Wajda
Rok vydání: 2005
Předmět:
Zdroj: Physiological Research. :363-368
ISSN: 1802-9973
0862-8408
DOI: 10.33549/physiolres.930637
Popis: Microcirculatory disturbances are important early pathophysiological events in various organs during acute pancreatitis (AP). The aim of the study was to investigate an influence of L-arginine (nitric oxide substrate) and NG-nitro-L-arginine (L-NNA, nitric oxide synthase inhibitor) on organ microcirculation in experimental acute pancreatitis induced by four consecutive intraperitoneal cerulein injections (15 μg/kg/h). The microcirculation of pancreas, liver, kidney, stomach, colon and skeletal muscle was measured by laser Doppler flowmeter. Serum interleukin 6 and hematocrit levels were analyzed. AP resulted in a significant drop of microperfusion in all examined organ. L-arginine administration (2x100 mg/kg) improved the microcirculation in the pancreas, liver, kidney, colon and skeletal muscle, and lowered hematocrit levels. L-NNA treatment (2x25 mg/kg) caused aggravation of edematous AP to the necrotizing situation, and increased IL-6 and hematocrit levels. A further reduction of blood perfusion was noted in the stomach only. It is concluded that L-arginine administration has a positive influence on organ microcirculatory disturbances accompanying experimental cerulein-induced AP. NO inhibition aggravates the course of pancreatitis.
Databáze: OpenAIRE