Existence of Solutions to Nonlinear Schrödinger Equations Involving N-Laplacian and Potentials Vanishing at Infinity
Autor: | Mao Chun Zhu, Jun Wang, Xiao Yong Qian |
---|---|
Rok vydání: | 2020 |
Předmět: |
Class (set theory)
Applied Mathematics General Mathematics media_common.quotation_subject Minimax theorem 010102 general mathematics Infinity 01 natural sciences Schrödinger equation Exponential function 010101 applied mathematics symbols.namesake Nonlinear system Bounded function symbols 0101 mathematics Laplace operator media_common Mathematical physics Mathematics |
Zdroj: | Acta Mathematica Sinica, English Series. 36:1151-1170 |
ISSN: | 1439-7617 1439-8516 |
DOI: | 10.1007/s10114-020-0020-z |
Popis: | We study the existence of solutions for the following class of nonlinear Schrodinger equations −Δnu + V(x)u = K(x)f(u)in ℝN where V and K are bounded and decaying potentials and the nonlinearity f(s) has exponential critical growth. The approaches used here are based on a version of the Trudinger-Moser inequality and a minimax theorem. |
Databáze: | OpenAIRE |
Externí odkaz: |