Commensal Microbiota Regulation of Metabolic Networks During Olfactory Dysfunction in Mice
Autor: | Haiyang Wang, Juncai Pu, Xiaotong Zhang, Hong Qiao Wei, Lanxiang Liu, Wei Zhou, Xuechen Rao, Chanjuan Zhou, Tingjia Chai, Ying Yu, Peng Xie, Wenxia Li, Hanping Zhang, Benhua Zeng |
---|---|
Rok vydání: | 2020 |
Předmět: |
Purine
Olfactory system biology Catabolism business.industry Metabolite Gut flora biology.organism_classification 030227 psychiatry Olfactory bulb Cell biology 03 medical and health sciences chemistry.chemical_compound 0302 clinical medicine Metabolomics chemistry Medicine Glycolysis business 030217 neurology & neurosurgery |
Zdroj: | Neuropsychiatric Disease and Treatment. 16:761-769 |
ISSN: | 1178-2021 |
DOI: | 10.2147/ndt.s236541 |
Popis: | Introduction Recently, an increasing number of studies have focused on commensal microbiota. These microorganisms have been suggested to impact human health and disease. However, only a small amount of data exists to support the assessment of the influences that commensal microbiota exert on olfactory function. Methods We used a buried food pellet test (BFPT) to investigate and compare olfactory functions in adult, male, germ-free (GF) and specific-pathogen-free (SPF) mice, then examined and compared the metabolomic profiles for olfactory bulbs (OBs) isolated from GF and SPF mice to uncover the mechanisms associated with olfactory dysfunction. Results We found that the absence of commensal microbiota was able to influence olfactory function and the metabolic signatures of OBs, with 38 metabolites presenting significant differences between the two groups. These metabolites were primarily associated with disturbances in glycolysis, the tricarboxylic acid (TCA) cycle, amino acid metabolism, and purine catabolism. Finally, the commensal microbiota regulation of metabolic networks during olfactory dysfunction was identified, based on an integrated analysis of metabolite, protein, and mRNA levels. Conclusion This study demonstrated that the absence of commensal microbiota may impair olfactory function and disrupt metabolic networks. These findings provide a new entry-point for understanding olfactory-associated disorders and their potential underlying mechanisms. |
Databáze: | OpenAIRE |
Externí odkaz: |