Popis: |
Land managers rely on prescribed burning and naturally ignited wildfires for ecosystem management, and must balance trade-offs of air quality, carbon storage, and ecosystem health. A current challenge for land managers when using fire for ecosystem management is managing smoke production. Smoke emissions are a potential human health hazard due to the production of fine particulate matter (PM2.5), carbon monoxide (CO), and ozone (O3) precursors. In addition, smoke emissions can impact transportation safety and contribute to regional haze issues. Quantifying wildland fire emissions is a critical step for evaluating the impact of smoke on human health and welfare, and is also required for air quality modeling efforts and greenhouse gas reporting. Smoke emissions modeling is a complex process that requires the combination of multiple sources of data, the application of scientific knowledge from divergent scientific disciplines, and the linking of various scientific models in a logical, progressive sequence. Typically, estimates of fire size, available fuel loading (biomass available to burn), and fuel consumption (biomass consumed) are needed to calculate the quantities of pollutants produced by a fire. Here we examine the 2006 Tripod Fire Complex as a case study for comparing alternative data sets and combinations of scientific models available for calculating fire emissions. Specifically, we use five fire size information sources, seven fuel loading maps, and two consumption models (Consume 4.0 and FOFEM 5.7) that also include sets of emissions factors. We find that the choice of fuel loading is the most critical step in the modeling pathway, with different fuel loading maps varying by 108 %, while fire size and fuel consumption show smaller variations (36 % and 23 %, respectively). Moreover, we find that modeled fuel loading maps likely underestimate the amount of fuel burned during wildfires as field assessments of total woody fuel loading were consistently higher than modeled fuel loadings in all cases. The PM2.5 emissions estimates from Consume and FOFEM vary by 37 %. In addition, comparisons with available observational data demonstrate the value of using local data sets where possible. |