Functional equations involving means

Autor: Rezső L Lovas, Gyula Maksa, Károly Lajkó, Zsolt Páles, Zoltán Daróczy
Rok vydání: 2007
Předmět:
Zdroj: Acta Mathematica Hungarica. 116:79-87
ISSN: 1588-2632
0236-5294
DOI: 10.1007/s10474-007-5296-2
Popis: In this paper, the functional equation $$ f(px + (1 - p)y) + f((1 - p)x + py) = f(x) + f(y), (x,y \in I) $$ is considered, where 0 < p < 1 is a fixed parameter and f: I → R is an unknown function. The equivalence of this and Jensen’s functional equation is completely characterized in terms of the algebraic properties of the parameter p. As an application, solutions of certain functional equations involving four weighted arithmetic means are also determined.
Databáze: OpenAIRE