On the blow-up of four-dimensional Ricci flow singularities
Autor: | Davi Maximo |
---|---|
Rok vydání: | 2012 |
Předmět: | |
Zdroj: | Journal für die reine und angewandte Mathematik (Crelles Journal). 2014:153-171 |
ISSN: | 1435-5345 0075-4102 |
DOI: | 10.1515/crelle-2012-0080 |
Popis: | In this paper we prove a conjecture by Feldman–Ilmanen–Knopf (2003) that the gradient shrinking soliton metric they constructed on the tautological line bundle over ℂℙ 1 $\mathbb {CP}^1$ is the uniform limit of blow-ups of a type I Ricci flow singularity on a closed manifold. We use this result to show that limits of blow-ups of Ricci flow singularities on closed four-dimensional manifolds do not necessarily have non-negative Ricci curvature. |
Databáze: | OpenAIRE |
Externí odkaz: |