Methodology for Impact Modeling of Triaxial Braided Composites Using Shell Elements
Autor: | Justin D. Littell, Wieslaw K. Binienda, Xuetao Li |
---|---|
Rok vydání: | 2009 |
Předmět: |
Materials science
business.industry Braided composite Mechanical Engineering Computation Shell element Shell (structure) Aerospace Engineering Structural engineering Nonlinear system Orientation (geometry) Braid General Materials Science Composite material business Material properties Civil and Structural Engineering |
Zdroj: | Journal of Aerospace Engineering. 22:310-317 |
ISSN: | 1943-5525 0893-1321 |
DOI: | 10.1061/(asce)0893-1321(2009)22:3(310) |
Popis: | In this paper, a two-dimensional triaxial braided composite model has been studied using the nonlinear explicit finite-element code LSDYNA. The unit cell consists of six subcells and material properties associated with shell element integration point simulate braiding architecture. The local material properties were selected by correlation of the global behavior of a coupon model with static specimen tests. By changing subcell size and orientation angle at integration points, different braids architectures were obtained. Panel ballistic models were performed with benefits of computation efficiency of shell elements. Mechanical properties, panel impact threshold velocities, and failure initiations for braids with bias angles of 75, 60, 45, and 30° were studied. Boundary effects were also investigated. |
Databáze: | OpenAIRE |
Externí odkaz: |