The 0-concordance monoid admits an infinite linearly independent set
Autor: | Maggie Miller, Irving Dai |
---|---|
Rok vydání: | 2023 |
Předmět: | |
Zdroj: | Proceedings of the American Mathematical Society. |
ISSN: | 1088-6826 0002-9939 |
DOI: | 10.1090/proc/15311 |
Popis: | Under the relation of 0 0 -concordance, the set of knotted 2-spheres in S 4 S^4 forms a commutative monoid M 0 \mathcal {M}_0 with the operation of connected sum. Sunukjian [Int. Math. Res. Not. IMRN 17 (2015), pp. 7950–7978] has recently shown that M 0 \mathcal {M}_0 contains a submonoid isomorphic to Z ≥ 0 \mathbb {Z}^{\ge 0} . In this note, we show that M 0 \mathcal {M}_0 contains a submonoid isomorphic to ( Z ≥ 0 ) ∞ (\mathbb {Z}^{\ge 0})^\infty . Our argument relates the 0 0 -concordance monoid to linear independence of certain Seifert solids in the spin rational homology cobordism group. |
Databáze: | OpenAIRE |
Externí odkaz: |