The 0-concordance monoid admits an infinite linearly independent set

Autor: Maggie Miller, Irving Dai
Rok vydání: 2023
Předmět:
Zdroj: Proceedings of the American Mathematical Society.
ISSN: 1088-6826
0002-9939
DOI: 10.1090/proc/15311
Popis: Under the relation of 0 0 -concordance, the set of knotted 2-spheres in S 4 S^4 forms a commutative monoid M 0 \mathcal {M}_0 with the operation of connected sum. Sunukjian [Int. Math. Res. Not. IMRN 17 (2015), pp. 7950–7978] has recently shown that M 0 \mathcal {M}_0 contains a submonoid isomorphic to Z ≥ 0 \mathbb {Z}^{\ge 0} . In this note, we show that M 0 \mathcal {M}_0 contains a submonoid isomorphic to ( Z ≥ 0 ) ∞ (\mathbb {Z}^{\ge 0})^\infty . Our argument relates the 0 0 -concordance monoid to linear independence of certain Seifert solids in the spin rational homology cobordism group.
Databáze: OpenAIRE