Supervenience, Reduction, and Translation
Autor: | Neil Dewar |
---|---|
Rok vydání: | 2019 |
Předmět: | |
Zdroj: | Philosophy of Science. 86:942-954 |
ISSN: | 1539-767X 0031-8248 |
DOI: | 10.1086/705445 |
Popis: | This article considers the following question: What is the relationship between supervenience and reduction? I investigate this formally: first, by introducing a recent argument by Christian List to the effect that one can have supervenience without reduction; then, by considering how the notion of Nagelian reduction can be related to the formal apparatus of definability and translation theory; then, by showing how, in the context of propositional theories, topological constraints on supervenience serve to enforce reducibility; and, finally, by showing how constraints derived from the theory of ultraproducts can enforce reducibility in the context of first-order theories. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |