Flexural–Torsional Free Vibration Analysis of a Double-Cantilever Structure
Autor: | S. Nima Mahmoodi, Anahita Zargarani |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | Journal of Vibration and Acoustics. 144 |
ISSN: | 1528-8927 1048-9002 |
Popis: | This paper aims to investigate the free coupled flexural–torsional vibrations of a double-cantilever structure. The structure consists of two identical Euler–Bernoulli cantilever beams with a piezoelectric layer on top. The beams are connected by a rigid tip connection at their free ends. The double-cantilever structure in this study vibrates in two distinct modes: flexural mode or coupled flexural–torsional mode. The flexural mode refers to the in-phase flexural vibrations of the two cantilever beams resulting in translation of the tip connection, while the coupled flexural–torsional mode refers to the coupled flexural–torsional vibrations of the cantilever beams resulting in rotation of the tip connection. The latter is the main interest of this research. The governing equations of motion and boundary conditions are developed using Hamilton’s principle. Two uncoupled equations are realized for each beam: one corresponding to the flexural vibrations and the other one corresponding to the torsional vibrations. The characteristic equations for both the flexural and the coupled flexural–torsional vibration modes are derived and solved to find the natural frequencies corresponding to each mode of vibration. The orthogonality condition among the mode shapes is derived and utilized to determine the modal coefficients corresponding to each mode of vibration. Moreover, the analytical and experimental investigations show that the coupled flexural–torsional fundamental frequency of the structure is dependent on dimensional parameters including the length of the cantilever beams and the length of the tip connection. |
Databáze: | OpenAIRE |
Externí odkaz: |