Étale Fundamental Groups of Strongly $\boldsymbol{F}$-Regular Schemes

Autor: Karl Schwede, Kevin Tucker, Javier Carvajal-Rojas, Bhargav Bhatt, Patrick Graf
Rok vydání: 2017
Předmět:
Zdroj: International Mathematics Research Notices. 2019:4325-4339
ISSN: 1687-0247
1073-7928
DOI: 10.1093/imrn/rnx253
Popis: We prove that a strongly $F$-regular scheme $X$ admits a finite, generically Galois, and étale-in-codimension-one cover $\tilde X \to X$ such that the étale fundamental groups of $\tilde X$ and $\tilde X_{{\mathrm{reg}}}$ agree. Equivalently, every finite étale cover of $\tilde X_{{\mathrm{reg}}}$ extends to a finite étale cover of $\tilde X$. This is analogous to a result for complex klt varieties by Greb, Kebekus, and Peternell.
Databáze: OpenAIRE