Étale Fundamental Groups of Strongly $\boldsymbol{F}$-Regular Schemes
Autor: | Karl Schwede, Kevin Tucker, Javier Carvajal-Rojas, Bhargav Bhatt, Patrick Graf |
---|---|
Rok vydání: | 2017 |
Předmět: | |
Zdroj: | International Mathematics Research Notices. 2019:4325-4339 |
ISSN: | 1687-0247 1073-7928 |
DOI: | 10.1093/imrn/rnx253 |
Popis: | We prove that a strongly $F$-regular scheme $X$ admits a finite, generically Galois, and étale-in-codimension-one cover $\tilde X \to X$ such that the étale fundamental groups of $\tilde X$ and $\tilde X_{{\mathrm{reg}}}$ agree. Equivalently, every finite étale cover of $\tilde X_{{\mathrm{reg}}}$ extends to a finite étale cover of $\tilde X$. This is analogous to a result for complex klt varieties by Greb, Kebekus, and Peternell. |
Databáze: | OpenAIRE |
Externí odkaz: |