Moisture limits for grassland soil to avoid structural damage due to machine trafficking

Autor: Emanuela Lepore, Olaf Schmidt, Owen Fenton, Saoirse Tracy, Giulia Bondi, David Wall
Rok vydání: 2023
DOI: 10.5194/egusphere-egu23-3137
Popis: Soil compaction is one of the primary threats to soil degradation in Europe; however, data to guide grassland farmers on how to avoid traffic induced soil compaction is limited. In grassland systems, soil moisture regimes are measured by daily soil moisture deficit (SMD) values and, when coupled with soil physical indicators could help safeguard the soil physical quality (SPQ). The objective of this study is to investigate how soil physical quality changes across different induced traffic compaction events at targeted SMD. A field study at Johnstown Castle Beef Farm (Wexford, Ireland) investigated the severity of soil physical changes caused by machine trafficking across different targeted soil moisture regimes. A tractor and a fully loaded slurry tanker trafficked moderately drained soil plots at SMD targets of 10 (dry (D)), 0 (moist (M)) and – 10 (wet (W)) mm. Compaction events simulated four passes across one year of grassland management: at the time of the first silage cut, in April; after the first cut silage harvest, in June; before the slurry spreading opening season, in October; and at the beginning of the slurry spreading period, in January. Soil bulk density (BD) samples were taken in the middle of the tyre marks at different depths (0-10, 10-20 and 20-30 cm). To examine indirect soil physical quality of various treatments, soil physical data was used to calculate the S value (Si) using the SawCal model. Initial results showed that the progressive increase in the number of trafficking events occurring above SMD 0 mm led to major compaction, which significantly increased (P
Databáze: OpenAIRE