A problem of heat and mass transfer: Proof of the existence condition by a finite difference method

Autor: Mikel Lezaun, M. Gaultier, F. Vadillo
Rok vydání: 1993
Předmět:
Zdroj: International Journal for Numerical Methods in Fluids. 16:87-104
ISSN: 1097-0363
0271-2091
DOI: 10.1002/fld.1650160202
Popis: SUMMARY We solve by a finite difference method a system of simultaneous non-linear partial differential equations which modelizes the transfer of heat and mass when a fluid evaporates from the hot wall and condenses on the cold wall of an upright rectangular cavity. The need to verify a certain condition associating the physical parameters of the fluid for the existence of steady state solutions is proved.
Databáze: OpenAIRE