Popis: |
When exposed to low temperature, homeothermic vertebrates maintain internal body temperature by activating thermogenesis and by altered metabolism, synchronized by neuroendocrine responses. Although such physiological responses also occur in poikilothermic vertebrates, the prevailing notion is that their reactions are passive. Here, we explored molecular hypothalamic and physiological responses to cold stress in the tropical poikilotherm Nile tilapia (Oreochromis niloticus). We show that cold exposed tilapia exhibit complex homeostatic responses, including increased hypothalamic oxytocin, plasma glucose and cortisol concomitant with reduced plasma lactate and metabolic rate. Pharmacological or genetic blockage of oxytocin signaling further affected metabolic rate in two cold-exposed poikilothermic models. This indicates that oxytocin, a known thermoregulator in homeotherms, actively regulates temperature-related homeostasis in poikilotherms. Overall, our findings show that the brain of poikilotherms actively responds to cold temperature by regulating metabolic physiology. Moreover, we identify oxytocin signaling as an adaptive and evolutionarily conserved metabolic regulator of temperature-related homeostasis. |