Some q-analogues of supercongruences for truncated $$_3F_2$$ hypergeometric series
Autor: | Victor J. W. Guo |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | The Ramanujan Journal. 59:131-142 |
ISSN: | 1572-9303 1382-4090 |
DOI: | 10.1007/s11139-021-00478-9 |
Popis: | In 2003, Rodriguez–Villegas found four supercongruences modulo $$p^2$$ (p is an odd prime) for truncated $$_3F_2$$ hypergeometric series related to Calabi–Yau manifolds of dimension $$d=3$$ . One of them was already proved by Van Hamme in 1997. A q-analogue of Van Hamme’s supercongruence was given by the author and Zeng, and the author and Zudilin. In this paper, we give q-analogues of the other three supercongruences of Rodriguez–Villegas. As a conclusion, we also generalize half of Rodriguez–Villegas’s supercongruences to the modulus $$p^3$$ case. |
Databáze: | OpenAIRE |
Externí odkaz: |