Friction and wear behaviour of hard and superhard coatings at cryogenic temperatures

Autor: Ye.L Ostrovskaya, V.E Strel'nitskij, V.I Kuleba, G.D Gamulya
Rok vydání: 2001
Předmět:
Zdroj: Tribology International. 34:255-263
ISSN: 0301-679X
DOI: 10.1016/s0301-679x(01)00009-3
Popis: The work presents data on friction and wear behaviour of pin-on-disc pairs with superhard diamond-like carbon (DLC) coatings and hard coatings of zirconium nitride (ZrN) and titanium nitride (TiN) in liquid nitrogen with loads of 2.5 and 10 N and sliding speed of 0.06 m/s. It is shown that at cryogenic temperatures the friction coefficients of pairs of two types of DLC coatings obtained by vacuum-arc deposition of filtered high-speed carbon plasma fluxes depend to a great deal on the mechanical properties of the coatings defined by predominant sp 2 or sp 3 hybridization of valence electrons. A friction coefficient of 0.76 was observed for friction pairs of superhard (90 GPa) DLC coatings having properties similar to those of diamond. For “softer” DLC coatings of 40 GPa and properties similar to those of graphite the friction coefficient shows lower values (0.24–0.48) dependent on normal load and counterbody material. The DLC coatings obtained by the filtered arc technology exhibit good wear resistance and have strong adhesion to the substrate under friction in liquid nitrogen. With a normal load of 10 N under cryogenic temperature a low wear rate (of the order of 7.2×10 −4 nm/cycle) was found for superhard DLC coatings. The friction coefficient of pairs with hard ZrN and superhard DLC coatings on steel discs was revealed to be linearly dependent on the counterbody material hardness between 20 and 100 GPa. The hardness of the pin was varied by means of depositing TiN or DLC coatings and also by using high-hardness compounds (boron nitride and synthetic diamond). Proceeding this way can be promising since it offers the possibility of creating low-temperature junctions of required friction properties.
Databáze: OpenAIRE